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Can Machine Learning Models and Diagnostics be
used to Predict and Understand Child Life

Outcomes?

1053722

1 Introduction to Fragile Families Challenge

While traditional sociological research is deductive by nature, an abundance of data

and modern technological resources have offered opportunities for an inductive ap-

proach to understanding relationships in large and complex data sets (Grimmer,

Roberts, & Stewart, 2021). Using data from the Fragile Families and Child Wellbe-

ing Study (FFCW), a detailed birth-cohort study, this analysis seeks to use modern

machine learning techniques to optimise and understand the predictions of six key

life trajectory variables: ‘GPA’, ‘grit’, ‘material hardship’, ‘eviction’, ‘layoff’, and

‘job training’. The following paper seeks to optimise three models for each outcome

variable, assess their performance, and use model diagnostic techniques to determine

the extent to which their decision-making criteria intersect with existing sociological

literature (Salganik, Lundberg, Kindel, & McLanahan, 2019).

During the 20th century, divorce rates in the United States dramatically in-

creased, leading to more children growing up with one parent or a parent and

stepparent (Waldfogel, Craigie, & Brooks-Gunn, 2010). The Fragile Families and

Wellbeing Study aims to understand how this shift has influenced the outcomes of

children, from a cognitive and behavioural perspective (Waldfogel et al., 2010). Of

the complex mechanisms which influence the development of children, Waldfogel et

al. (2010) discuss five important factors: parental resource; parental mental health;

parental relationship quality; parenting quality; and father involvement. In fragile

families, especially those with a single parent, fewer resources are able to be allocated

due to economic challenges. This can impact children through fewer books, clothes,

or worse schools in disadvantaged neighborhoods (Ryan, Kalil, & Leininger, 2009).

Single or cohabitating mothers have also been found to suffer more from depression,

which may impact the quality of parenting offered to their children (Friedlander,

Weiss, & Traylor, 1986). The conflict stemming from divorce, and the numerous
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adjustments occurring in the aftermath, are other factors which influence parenting

and may negatively impact a child’s environment (Peterson & Zill, 1986). While

parental quality is self-explanatory as an influence on the upbringing of a child, fa-

ther involvement has been linked with improved behavioural quality and improved

cognitive and language abilities (Heiland & Liu, 2006).

This paper will begin by describing the FFCW data set and the various cleaning

steps undertaken to optimise the data for modelling. Subsequently, a description

of the models used on each outcome variable will be provided. The modeling ap-

proaches used in this study include both linear and tree-based methods, and the

relevance of their various hyperparameters will be explored. The following portion

will explain the motivation for using a randomised search hyperparameter optimi-

sation, and the various data preprocessing steps in each model’s pipeline prior to

training to the data. The preprocessing techniques include imputation, standardisa-

tion, feature selection, and imbalanced class procedures for the binary variables. The

results will be composed of each model’s performance on all six outcome variables

relative to the ‘baseline model’, explained in the Methods Section. The discussion

section will use SHAP, a model diagnostic technique to determine the birth cohort

variables which are most predictive to each life outcome, and place these findings

within the literature with an inductive approach. The closing section of the essay

will provide an interpretation of the models’ performance, and the limitations of

modelling social phenomena with machine learning methods.

2 Data

The FFCW data set originally contains observations from 4,242 families, with 13,027

features for each. Each feature represents a survey response relating to the par-

ents, children, or environment of each family. Removing columns that are entirely

constant, thus not providing predictive value to model, there are 10,594 features.

The data set is structured so that negative values represent different forms of non-

response, such as ‘-9’, which is ‘not in wave’, and ‘-3’, which is ’missing’. In addition

to this, there are also values which have no label (‘NaN’), or state ‘Other’ or ‘Miss-

ing’. While the negative values do not provide specific information pertaining to

the question, there are two forms of non-response which are potentially predictive

information: ‘-2’, representing ‘don’t know’, and ‘-1’, denoting a refusal to answer.

The data cleaning procedure is an essential step when managing large data sets,

as one must maximise the inclusion of potentially useful information and thought-

fully classify the feature types, while avoiding redundant features which increase its
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dimensionality. The columns with 80% or more ‘NaN’ values are dropped from the

data set entirely, deemed to provide too little information, leading the erasure of 34

columns. Subsequently, all values from ‘-9’ to ‘-3’, and ‘Other’ or ‘Missing’ values

are grouped into a new label, referred to as ‘-10’. All columns with over 80% of

values as this ‘-10’ grouping were removed, leading to a reduction of 5,265 features.

While most features are numerical, there are 81 features composed of strings, which

are translated to binary columns to allow their inclusion into the models. The sur-

vey includes questions that are either continuous, ordinal, categorical. Due to the

size of the data set, this analysis employed a heuristic method of determining the

structure of the variables. If a feature contained 15 or fewer unique values, and no

‘float’ values, it was deemed ordinal or categorical. Prior to creating binary classes

for each possible feature in this group, a threshold was used to determine if the

values contained in these features contained a strong majority class. Rather than

specify the specific minority labels, which may have too few observations to con-

tribute meaningful information to the model, this threshold may allow the model to

better capture the impact of being in the non-majority. This was calculated as fol-

lowing: if the most common non-negative value in an ordinal or categorical columns

represented at least 80% values, a dummy was created if it was in this majority

class or the minority group. Values representing ‘-10’, ‘-2’, and ‘-1’ were included

as separate dummies. The remaining columns without this value imbalance had all

features dummied. To prevent the ‘-10’, ‘-2’, and ‘-1’ values from contaminating the

continuous feature, they were set to ‘NaN’ values and replaced with a binary classifi-

cation label where present. The final data set after the cleaning and transformation

process includes 29,449 variables (code included in Appendix B file).

3 Methods

The following section will discuss the hyperparameter optimisation methods, model

classes, model pipelines, and performance metrics, all included in the Code Ap-

pendix.

3.1 Hyperparameter Optimisation

This analysis uses a combination of manual and randomised search to determine the

optimal combination of hyperparameters for each model. Manual searches were ini-

tially used to develop an intuitive estimation of a broad range of suitable parameters.

Following this, random iterations across a wide and granular parameter space were

assessed, selecting the model with the lowest mean squared error (continuous case),
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or brier score (binary case). Randomised search has been found to select models

with equal or better performance as a sequential grid search, with a lower computa-

tion time (Bergstra & Bengio, 2012). This is commonly attributed to its ability to

search larger and less promising parameter spaces (Bergstra & Bengio, 2012). Es-

pecially in the random forest and boosting models, with many hyperparameters, it

allowed for a thorough exploration of optimal hyperparameter combinations, which

would have been computationally infeasible with a manual or sequential grid search.

While it has been found in Bergstra and Bengio (2012) that most data sets can be

optimised without tuning all hyperparameters, the relative importance of certain

hyperparameters varies based on the data set. For this reason, a large and diverse

hyperparameter space was chosen to optimise models on the data set, made feasible

by using an iterative random approach.

3.2 Models

3.2.1 Elastic Net

For the continuous response variables, an elastic net regression is used which linearly

combines the feature selection of L1 regularisation and the parameter shrinkage of

L2 regularisation (Zou & Hastie, 2005). A linear model is fit to the data which

prioritises error minimisation and a model coefficient budget specified by a regu-

larisation constant (alpha) and the specified L1 and L2 balance. Each categorical

variable is modelled with an elastic net logistic regression with stochastic gradient

descent learning. Similarly to an elastic net logistic regression, the L1 ratio must

be optimised, which determines the relative balance of L1 (feature selection) versus

L2 (shrinkage) regularisation. The second optimised parameter is alpha, which is a

regularisation constant, which places greater constraint on the model as it increases.

Where this model differs from traditional elastic net logistic regression in its learning

method: at each iteration, the loss gradient for a sample of training data is esti-

mated, and the model is updated with a decreasing learning rate until a minimum

is found for the logistic loss function.

3.2.2 Random Forest Classifier

A random forest is an ensemble of regression or classification trees that fit numerous

trees to the data set and averages the total result. In this analysis, regression

trees are fit to the continuous variables and classification trees are fit to the binary

outcomes. The main components of single decision trees are nodes and branches,

which subdivide the data set into mutually exclusive subsets (Song & Lu, 2015).

5



1053722

Responses are predicted by finding an optimal split minimising a constant piece-wise

loss function, then constructing the nodes and branches in a hierarchical manner,

with a prediction in the bottom tier. The random forest uses bootstrapping to

generate T decision trees, which are fit to the data set using a specified subsample

of features. The random selection of features reduces the risk of overfitting to the

training set. The average of the predictions from all the generated decision trees is

used to generate the random forest prediction. In the continuous case, the outcomes

will be the average of all continuous predictions, and in the binary case, it is based

on the proportion of predicted classes.

Increasing the number of estimators in a decision tree can help to improve the

model’s accuracy, but slow down the training process (Probst & Boulesteix, 2017).

Due to this constraint, the number of estimators is included in the randomised search

to find the number of trees which achieves the accuracy without including more

trees than necessary. From a bias-variance perspective, important hyperparameters

to tune are the maximum depth of the tree, which increase its complexity, the

minimum samples to create a split, which constrains the model as it increases, and

the minimum sample to create a ‘leaf’ at the base of the tree, similarly constraining

complexity as it increases.

3.2.3 Gradient Boosting

The third model implemented on each variable is gradient boosting regression (if

continuous) or classification (if binary). Similarly to a random forest, boosting

involves an ensemble of decision trees. In boosting algorithms, new decision trees,

known as weak learners, are added to account for the residuals of prior models. The

loss function used to define errors in the continuous case is mean squared error,

and a logistic loss function was used in the binary case. The minimisation of these

differentiable loss functions is why this model is referred to as gradient boosting.

The predictions of all trees are then averaged to reach a final estimation.

The learning rate decreases the relative importance of each newly added model,

reducing the risk of overfitting to the training set. Maximum depth is included as a

hyperparameter to optimise the bias-variance tradeoff. The gamma value is another

regularisation parameter that ‘prunes’ the tree moving upwards based on the gain

of a node relative to the parameter threshold. The minimum child weight requires

a minimum number of samples to create a new node, limiting the complexity of the

model. Subsampling performs a selection of training instances for each iteration,

which increases the variance as the sample moves towards the entire data set. Sim-

ilarly to random forests, another hyperparameter is the fraction of features used in
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the training set, to increase the bias and limit overfitting. This hyperparameter is

specified at the tree-level and node-level. Compared to random forests, boosting

algorithms are more at risk of overfitting as the number of estimators increases, due

to the iterative process of fitting residuals (Boehmke & Greenwell, 2019). All of

these hyperparameters are specified in the randomised search to select the hyperpa-

rameters which best predict the cross-validation set.

3.3 Model Pipeline

The first step in the pipeline used for continuous or categorical response variables

is to impute the missing input data. The randomised-search cross-validation tech-

nique included both mean and median as imputation strategies, which were chosen

at random with the rest of the model parameters. This analysis omitted imple-

menting a regression-based iterative approach to computing missing values, as this

approach has been found to be ineffective with high dimensional data, and reduced

the performance of the models (Deng, Chang, Ido, & Long, 2016).

The second step in the pipeline is the standardisation of input data. The ran-

domised hyperparameter search included both a min-max scaler and a robust scaler,

which were randomly combined with the other hyperparameters. The min-max

scaler sets the minimum value for a feature as 0 and the maximum value as 1, lin-

early mapping each value to fall between them. With the binary variables created in

the data cleaning process, this method naturally preserved their values while scal-

ing the other features. The robust scaler is more robust to outliers relative to the

min-max scaler, mapping the variables based on each value’s relation to the 25th

and 75th percentile (Cao, Stojkovic, & Obradovic, 2016).

For continuous response variables, a z-score standardisation of the response la-

bel was integrated in each model’s pipeline. This standardisation method allowed

each response variable to be interpreted in terms of the number of standard devi-

ations from the mean. This method allows the outcome variables to be assessed

on a comparable scale for model diagnostics (Caldwell et al., 2019). A quantile

transformer designed to normalise the response variables was attempted for skewed

variables such as material hardship (Figure 1), but negatively contributed to the

models performance, and was therefore omitted from the analysis.
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Figure 1: Distribution of Material Hardship Outcome Variable

For categorical response variables, which did not require any standardisation

method, this analysis resamples the training set minority class. The binary response

variables in the data set display a strong imbalance, shown in Figure 2. This analysis

originally attempted two methods for handling the imbalanced labels: upsampling

the minority class, and increasing the penalty for a misclassified minority value.

With highly imbalanced response variables, both linear and tree-based models tend

to be biased towards the majority class, with lower sensitivity towards the minority

class (Lee, 2014; Burnaev, Erofeev, & Papanov, 2015). In the hyperparameter

search, it was found that resampling produced improved brier scores relative to

increasing the penalty for a misclassified minority value.

For classification models with heavily imbalanced classes, re-sampling the minor-

ity class to appear at equal frequencies as the majority can lead to greater sensitivity

towards the minority class (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). The resam-

pling function in this analysis is known as SMOTE: synthetic minority oversampling

technique. Rather than a random sample and duplication of minority observations,

SMOTE operates by generating synthetic data that is similar to minority class ex-

amples (Chawla et al., 2002). It selects the nearest neighbors of a given observation,

finds the difference between the two observations, and selects a random point along

the line segment between them (Chawla et al., 2002). SMOTE generalises the mi-

nority class’ decision region, a potentially helpful application when introducing new

data points from the test set (Chawla et al., 2002).

The final step in the pipeline, prior to the training of models, was a feature

selection component. Due to the ability of elastic net classifiers to perform both
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Figure 2: Distribution of Binary Outcomes for ‘Eviction’, ‘Layoff’, ‘Jobtrainig’

shrinkage and large-scale feature selection according to Marafino, John Boscardin,

and Adams Dudley (2015), an additional feature selection was not included for that

class of models. While boosting and random-forest models have been found to per-

form well with high dimensional data, their performance tends to degrade when the

high-dimensional data is noisy (Capitaine, Genuer, & Thiébaut, 2020; Liu & Tsang,

2017). For this reason, an additional parameter in the randomised search selected

the k-best input features based on their ANOVA f-score relative to the training

output. The randomisation of this parameter allowed for an assessment of model

performance with various feature space sizes, along with the other hyperparameters.

3.4 Performance Metrics

For cross-validation and hyperparameter optimisation, the training set included in

the Fragile Families Challenge was used. The final assessment of mean-square error

and R2 was performed on a holdout ‘test set’, which is presented in the results.

Calculated for each model is the mean squared error (MSE) and R2 of each model.

The mean squared error is defined with the following equation, where e is the residual
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of each model output relative to the true value (Boehmke & Greenwell, 2019):

MSE =
1

n

n∑
j=1

e2j (1)

The R2 value is a separate metric that calculates the percentage of the total

variation in the response variable explained by the input variables (Hamilton, Ghert,

& Simpson, 2015). An R2 value of 1 implies that all variation in the output variable

is captured by the model, and 0 implies that no outcome variability is explained by

the model (Hamilton et al., 2015).

For each classification model, three scores are provided: The Brier Score, pre-

cision, and recall. The Brier score is an accuracy metric that calculates the error

of estimated probabilities compared to the true value labels (Redelmeier, Bloch, &

Hickam, 1991). Its formula is represented by the following equation, where ot is the

true label value, and ft is the classifier’s estimated probability:

BS =
1

N

N∑
t=1

(ft − ot)
2 (2)

Precision is represented by the following equation:

Precision =
true positives

true positives + false positives
(3)

It represents the proportion of correctly classified positive cases, divided by all

cases labelled as positive. Recall is calculated from the following equation, repre-

senting the number of positive cases that were classified as such, relative to the total

number of positive cases.

Recall =
TruePositive

TruePositive + FalseNegative
(4)

The precision and recall calculations require a predicted label. Due to the up-

sampling used to create equal class balances in the cross-validated training data,

a threshold of 50% was in the first set of precision and recall values (denoted P

(50%, R 50%). Subsequently, an approach to optimise each model’s threshold based

on the training data was used to generate P∗∗ and R∗∗. Each model’s respective

threshold value was optimised on a portion of the training set held out prior to

cross-validation. The threshold chosen maximises the geometric mean, which is

calculated as the
√

(TruePositiveRate) ∗ (1 − FalsePositiveRate). An example

of the g-mean optimised point on the ROC curve is shown in Figure 3, using the

gradient boosting model for ‘Job Training’ as an example.
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Figure 3: Job Training ROC Curve with Optimal G-Mean Point (Gradient Boosting)

The baseline MSE and Brier Score provided in the results are the scores of a

simple linear or logistic regression with four predictor variables selected by an expert

in the field, and are included for comparison with this analysis’ model performance

(Salganik et al., 2020).

4 Results

4.1 Continuous Response Variables

For ‘GPA’, the elastic net model’s MSE of 0.38 and R2 of 0.08 were the lowest

performing metrics of all three models. The random forest model’s MSE of 0.35 and

R2 of 0.16 were marginally outperformed by the gradient boosting model’s MSE of

0.34 and R2 of 0.18. All three models outperformed the baseline MSE.

For ‘grit’, the gradient boosting was the highest performing on MSE, with a

value of 0.23, compared to the elastic net’s value of 0.25 and random forest’s MSE

of 0.35. The random forest’s R2 of 0.16 was an improvement on both the elastic net

(0.005) and the gradient boosting model (0.05). None of the three models produced

an R2 greater than the baseline.

For ‘Material Hardship’, the third continuous variable, all three mean squared

errors were highly similar, with the random forest and gradient boosting models

both outputting 0.019, and the elastic net 0.02. The elastic net’s R2 was the lowest

of all three (0.034), with the random forest and elastic net displaying 0.2 and 0.19,
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respectively. The elastic net, random forest, and gradient boosting all produced

higher R2 relative to the baseline.

Variable Model Baseline MSE MSE R2

GPA

ElasticNet

0.39

0.38 0.08

Random

Forest
0.35 0.16

Gradient

Boosting
0.34 0.18

Grit

ElasticNet

0.21

0.25 0.005

Random

Forest
0.35 0.16

Gradient

Boosting
0.23 0.05

Material

Hardship

ElasticNet

0.028

0.02 0.034

Random

Forest
0.019 0.2

Gradient

Boosting
0.019 0.19

Table 1: Results for Continuous Predictor Algorithms – MSE and R2; Submitted

to Class Challenge Leaderboard

4.2 Binary Response Variables

The ‘Eviction’ gradient boosting model had the lowest (best performing) Brier Score,

with a value of 0.052 – the only model outperforming the baseline. For grit, the

random forest and gradient boosting models have a Brier Score of 0.168, relative

to the baseline of 0.17. For ‘Job Training’, the random forest model has the lowest

Brier Score with a value of 0.16, relative to the baseline of 0.2.

The precision and recall values vary substantially based on whether the 50% or

optimal threshold is used. For the optimal threshold on ‘Eviction’, the elastic net

and gradient boosting have the two highest precision values of 0.18, and random
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forest has the highest recall of 0.69. For the ‘Layoff’ variable, the gradient boosting

model has the highest optimised precision value at 0.86, and the random forest has

the highest recall at 0.3. For ‘Job Training’, the elastic net has the highest optimised

precision value at 0.76, and the highest recall at 0.24. With the 50% classification

threshold, the results demonstrate that 4 out of the 9 models had 0 precision and 0

recall.

Variable Model
Baseline

Brier Score
Brier Score P (50%) R (50%) P ** R **

Eviction

ElasticNet

0.053

0.065 0.190 0.061 0.18 0.1

Random

Forest
0.054 0.0 0.0 0.12 0.69

Gradient

Boosting *
0.052 0.15 0.18 0.18 0.26

Layoff

ElasticNet

0.17

0.37 0.51 0.21 0.31 0.19

Random

Forest
0.168 0.0 0.0 0.29 0.3

Gradient

Boosting *
0.166 0.0 0.0 0.86 0.23

Job

Training

ElasticNet

0.2

0.22 0.295 0.329 0.76 0.24

Random

Forest
0.16 0.0 0.0 0.28 0.23

Gradient

Boosting
0.177 0.05 0.48 0.48 0.05

Table 2: Results for Continuous Predictor Algorithms – Brier Score, Precision, Re-

call (50% and optimised threshold**); Submitted to Class Challenge Leader-

board; * Highest Accuracy on Class Challenge Leaderboard
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5 Model Diagnostics and Discussion

The first section of this discussion will use model diagnostic techniques to deter-

mine the variables most important to each outcome prediction, and place the find-

ings within the context of existing sociological literature. The approach used in

this analysis is SHAP (SHapley Addition exPlanations), which will be applied to

the model with the lowest MSE or Brier Score for each respective variable. SHAP

is a kernel-based estimation method for determining Shapley values, based on lo-

cal surrogate models (Molnar, 2019). Each feature in the data set is assigned a

contribution to the prediction, which allows for an analysis of important features

to traditionally ‘black box’ models, such as random forest and gradient boosting

algorithms (Molnar, 2019). The relevant features and their relationship to the out-

come variable are discussed in each section, with a total list of variable names and

descriptions in appendix A.

5.0.1 GPA: Gradient Boosting

The SHAP analysis for ‘GPA’ uses the gradient boosting model, with the results

shown in 4. As all outcome variables in this analysis are standardised, the baseline

value shown in the figure is 0.00, the mean, and the values around the mean are in

terms of standard deviations. The variables are ranked in descending order of im-

portance. The first three variables are the ‘Woodcock Johnson Test Score’, ‘PPVT

Standard Score’, and the ‘PPVT Raw Score’ (ch5wj10ss, ch5ppvtss, ch5ppvtraw).

These variables, which relate to the testing ability of the child, are intuitively pos-

itively related to their ‘GPA’, represented in Figure 4. The fourth highest variable

is a dummy representing whether the father had a college or graduate education

(cf1edu 4), which is positively related to ‘GPA’. The fifth variable is a dummy of

whether or not the child had above-average math skills (t5c13c 4). The last three

variables are all related to the income and poverty level of the child (cf5povcob,

cm5hhinc, cf5hhincb)

The performance of the student on standardised tests and their mathematical

abilities are clear indicators of general success in school. That these variables out of

the 29,499 were highlighted is useful for assessing the model’s ability to select im-

portant features. The importance of a father’s education on the ‘GPA’ of the child

is concurrent with literature on determinants of child outcomes. Dubow, Boxer,

and Huesmann (2009) find that when controlling for other socio-economic factors,

the educational attainment of a child’s parent is predictive of their child’s academic

attainment and performance. The other variables are all income-related, communi-
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cating that families with more income have children with a higher ‘GPA’. This is

in line with the theories of child outcomes offered in the introduction, potentially

through fewer educational resources or schools in poorer neighborhoods. Addition-

ally, poverty can manifest in poorer parenting quality, child well-being, and cognitive

development (Dubow et al., 2009).

Figure 4: SHAP Analysis – 8 Most Important Features for GPA Prediction

5.0.2 Grit: Gradient Boosting

As displayed in Figure 5, the three most important variables for ‘grit’ predictions

all relate to test scores, displaying that lower scores are associated with higher

‘grit’ (ch5wj9raw, ch5ppvtss, ch5wj10raw). Additionally, having no trouble paying

attention (k5g2d 0), not getting distracted easily (k5g2f 0), and the parent knowing

what the child does in free time (p5i26 4) are all positively associated with ‘grit’. The

dummy variables indicating worrying a little bit about school (k5g21 1) is negatively

associated with ‘grit’, along with sometimes following things through to the end

(k5g1e 2).

The literature on ‘grit’ in children proposes a weak to moderate relationship with

educational variables, whereas the gradient boosting model’s top three values were

all educational related (Christopoulou, Lakioti, Pezirkianidis, Karakasidou, & Sta-

likas, 2018). According to Christopoulou et al. (2018), perseverance plays a key role,

potentially explaining the high SHAP importance of not getting distracted easily

or not paying attention. Additionally, the survey response of sometimes following

things through to the end may demonstrate low perseverance, explaining its negative

relationship to ‘grit’.
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Figure 5: SHAP Analysis – 8 Most Important Features for Grit Prediction

5.0.3 Material Hardship: Random Forest

The variable with the most influence is not being able to pay the electricity bill,

which is positively related to hardship, and being able to pay the bill, which is

negatively associated (m5f23e 1, m5f23e 2). The third most important is the tele-

phone service being disconnected due to unpaid bills (m5f23k 1), and a negative

association with not receiving food stamps in the prior 12 months (m5i20 2). The

next variable is not paying full rent/mortgage because there was not enough money

(m5g0 1). Having a very positive life satisfaction is also negatively associated with

‘material hardship’ (m4i23d 1). The final two variables on the list were receiving a

free meal in the last 12 months (m5f23a 1), and household income (cm4hhinc).

Of the eight variables most important to the random forest output, seven of them

are unambiguously related to income. The topics are related to family troubles due

to insufficient funds, an inability to pay bills, or receiving free meals. The variable

on life satisfaction can be explained from Bannink, Pearce, and Hope (2016), who

discusses that family income and perception of family income both contribute to

lower self-esteem and life satisfaction.
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Figure 6: SHAP Analysis – 8 Most Important Features for Material Hardship Pre-

diction

5.0.4 Eviction: Gradient Boosting

The gradient boosting SHAP diagnostic explains that the most influential variables

for ‘eviction’ are not paying rent in the past 12 months (m4i23d 1), and having the

telephone service disconnected (m5f23k 1). The third is the money spent eating

out (p5j10), which is negatively related to ‘eviction’. Subsequently, ‘eviction’ is

positively related to families strongly believing that the bible should be interpreted

literally (f3rf 1). The fifth variable is having the telephone service ever disconnected

(m3i6a 1), followed by a negative association with the money received from public

welfare (m1j2b). The final associations in descending importance are a positive

relationship with receiving help from a welfare office or job placement in the last 12

months (m5f7b 1), and a positive relationship with the child ‘getting into everything’

(p3m18a a).

There is a clear link between the lack of income available in a family and ‘evic-

tion’, evidenced in the rent, telephone bill, and eating out survey responses. The

positive relationship with religiosity is not supported by the prior work of Desmond

and Kimbro (2015a), who finds that religious attendance has a statistically insignifi-

cant relationship to ‘eviction’ in low-income American families. Interestingly, money

received from welfare is negatively associated with ‘eviction’, yet receiving help or

work from a welfare office is positively associated with ‘eviction’. With US housing

rates generally rising and welfare stipends stagnating, less ‘eviction’ based on greater

welfare money is a conceivable outcome (Desmond & Kimbro, 2015b). For the find-

ing that greater help from a welfare office relates to greater values for ‘eviction’,

Desmond and Gershenson (2017) find that drawing the attention of welfare officers
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attracts unwanted state attention, making landlords more likely to evict families

with children.

Figure 7: SHAP Analysis – 8 Most Important Features for Eviction Prediction

5.0.5 Layoff: Gradient Boosting

The most influential variable represents the principal component of 9 variables re-

lating to the strength of the relationship between parents (m4d6). The second most

important is the ‘-10’ value for family savings, which is a generated non-response

label from the cleaning stage (m5j6h -10). Subsequently, being in excellent health

is strongly negatively related to ‘layoff’ (f4j1 1), along with a father never being

in jail (m5b30 2). The following most important variable is not knowing (‘-10’)

whether parents attend informal meetings (t4a10 -10). The next most important

variables, which are positively associated with ‘layoff’, are not receiving help from a

non-welfare office (f5f7c 2), feeling very good about oneself as a mother (m3b1 1),

and having enough money to see the doctor (f5f23j 2).

The first variable is the first principal component of a range of questions relating

to the parent’s relationship, with no clear meaning. Similarly, the ambiguity of the

term ‘informal meetings’ leaves interpretation difficult. Interestingly, poor health

was found to be associated with being laid off, concurrent with the research of

Jusot, Khlat, Rochereau, and Serme (2008), yet being able to pay for needed medical

assistance is associated with ‘layoff’ – the two results seeming in opposition.
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Figure 8: SHAP Analysis – 8 Most Important Features for Layoff Prediction

5.0.6 Job Training: Random Forest

For the gradient boosting model, questions specifically related to the individual’s

‘job training’ were the three most important in the model. Such questions include

whether one has taken a class to improve job skills (m4k3b 1), is currently attending

any school/training/programs (m5i1 1), or has taken a ‘job training’ class since the

last interview (m5i3b 1). Other positively associated variables include whether one

was in the gifted and talented program or not (pfL13f 1, pfL13f 2), their job earnings

in the last 12 months (m5i19a, m3k19). Also positively associated with ‘job training’

is whether the mother had a technical college education (cm5edu -3).

While the ‘job training’ variables are intuitively related to the outcome, this

diagnosis communicates that individuals who are more gifted are likely to have

received ‘job training’, along with individuals who earn more money. Interestingly,

while the father’s education was a key variable in ‘GPA’, it is the mother’s education

which associates with the child receiving ‘job training’. Heinrich (2014) discuss the

importance of parents as role models, and that a parent’s educational experience may

influence a child’s decision further job prospects. This is especially true in fragile

families, where work may replace welfare, an unattractive alternative, leading to

greater motivation to receive adequate ‘job training’ (Heinrich, 2014).
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Figure 9: SHAP Analysis – 8 Most Important Features for Job Training Prediction

Despite the ability of the SHAP diagnostic techniques to discern some relation-

ships related to the existing literature, the results section demonstrates the difficulty

with which complex social phenomena can be accurately predicted with machine

learning techniques. The results for the models, despite their varied approaches

to predicting outcomes, do not provide substantial improvements on the baseline

scores. Across all continuous variables, the most variation explained by a model

is 20%, generated by the random forest on ‘job training’. Similarly, in the binary

response variables, no model is able to significantly improve on the baseline Brier

Scores, or achieve high precision and recall – even when using optimised classification

thresholds. Despite the richness of the FFCW data set and apparent model detection

of relevant variables, a high proportion of the outcomes remain unexplained.

Using a wide array of data cleaning, pre-processing, hyperparameter optimisa-

tion, and modeling techniques, this analysis largely confirms the findings of (Salganik

et al., 2020) (2020), that sophisticated machine learning models provide minor im-

provements, if any, on predicting life outcomes. In the original Fragile Families

challenge with 160 submissions, many complex models performed as well or worse

than the baseline, with similarly mixed results found in this analysis. The paper

has demonstrated that training machine learning models and using model diagnos-

tic techniques to inductively discern relationships may not overcome the inherent

uncertainty in real-world phenomena. While an inductive approach to answering

questions of social scientific relevance may help to explore relationships in large and

complex data sets, this analysis conveys that adequate care must be taken to ensure

the models accurately capture the outcome variables if they are to be trusted.
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6 Appendix – (Code in Submission Folder)

A Full Variable Names for SHAP Analysis

Feature Name Description

ch5wj10ss Woodcock Johnson Test 10 standard score

ch5ppvtss PPVT standard score

ch5ppvtraw PPVT raw score

cf1edu 4 Father baseline education – col or grad

t5c13c 4 Child’s mathematical skills – above average

cf5povcob Father’s household income/poverty threshold at 9-year

cm5hhinc Mother’s Household income

cf5hhincb Household income mother report for married/cohab if available

ch5wj9raw Woodcock Johnson Test 9 raw score

ch5wj10raw Woodcock Johnson Test 10 raw score

k5g2d 0 It’s hard for me to pay attention – not at all true

k5g2f 0 I get distracted easily – not at all true

p5i26 4 Frequency you know what child does during free time – always

k5g2i 1 I worry about doing well in school – a little bit true

k5g1e 2 I follow things through to the end – sometimes

m5f23e 1 Did not pay full amount of gas/oil/electricity bill in past 12 mo – yes

m5f23e 2 Did not pay full amount of gas/oil/electricity bill in past 12 mo – no

m5f23k 1 telephone disconnected in last 12 months – yes

m4i20 2 Time in past 12 mo. you thought might be eligible for food stamps – no

m4i23d 1 12 mo. did not pay full rent/mortgage payments b/c wasn’t enough – yes

m5g0 1 How satisfied you are with your life overall – very satisfied

m5f23a 1 Received free food or meals in past 12 months – yes

cm4hhinc Household income
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m5f23c 1 Not paid rent last 12mo - yes

m5f23k 1 Did not pay full about of rent/mortgage 12mo - yes

p5j10 Money spent eating out

f3r4 1
Strong belief that Bible should

be literally interpreted

m3i6a 1 Telephone service disconnected 12mo - yes

m1j2b How much money from pub. assis/welfare?

m5f7b 1
Received help from welfare office/job placement

12mo - yes

p3m18a 2 Child gets into everything – Very True

m4d6 First principal component scale created from m4d6a-i

m5j6h -10 You or your husband/partner have savings – missing/skip/not in wave

f4j1 1 In general, how is your health? – excellent

m5b30 2 Father has spent any time in jail – no

t4a10 -10 parents attend informal meeting – -10

f5f7c In the past twelve months, you received help from any other agency – no

m3b1 2 How do you feel about yourself as a mother to child? – very good

f5f23j 2 Someone in hh needed to see doctor but couldn’t – no

m4k3b 1 In the last 2y, have you taken any classes to improve your job skills? – yes

m5i1 1 You are currently attending any school/trainings program/classes – yes

m5i3b 1 You have taken classes to improve job skills since last interview – yes

p5L13f 1 Gifted and talented program – yes

m5i19a Amount earned from all regular jobs in past 12 months

cm5edu 3 Mother’s education – some coll, tech

pfL13f 2 Gifted and talented program – no

m3k19 How much did you earn from all regular jobs in past year?

Table 3:
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